Heroes – Think Digital
Case study: Integrating IoT in your maintenance practice

Werner Vink | Engineer IoT
Mission
Think Digital

Vision
Coach companies to become Digital winners. Scout and Build smart digital solutions.
Market Prospects 2025

Internet of Things

- **Machinery**: Connected machines for real-time monitoring
- **Building Management**: Creating smart buildings/cities
- **Healthcare**: Remote monitoring of patients health
- **Logistics**: Precise location services for tracking and trace
- **Devices**: Management and control applications
- **Retail**: Insights about shopping behaviour

- **4 BILLION**
 - Connected people
- **$4 TRILLION**
 - Yearly revenue opportunities
- **25+ MILLION**
 - Apps
- **25+ BILLION**
 - Embedded and intelligent systems
- **25+ TRILLION**
 - GB’s of data

Source: Mckinsey 2016
Where is the value potential?

Internet of Things

Interoperability required to capture **40% of total value**

< 1 % of data currently used, mostly for alarms or real-time control; more can be used for optimization and prediction

2 x more value from B2B applications than consumer

Source: Mckinsey 2016

- Developing world: 40%
- Developed world: 60%
B2B Opportunities

Internet of Things

Use cases that will enhance the process of management in regard to the total cost of ownership

- Enhancing efficiency
 - e.g. optimizing use of energy
- Quality control
 - e.g. reducing physical inspections
- Predicting and avoiding
 - e.g. reducing downtime risk
- Asset tracking
 - e.g. alarms using geofencing
- Inventory management
 - e.g. real-time status
- Supply chain
 - e.g. schedule tweaking
Technology Value Chain

Internet of Things
Internet of Things
A world connected

Use Case #1
Predictive Maintenance
Cutting out operational inefficiencies
Predictive Maintenance

Internet of Things

• Sustainable System Maintenance
 • Enabling machine learning to predict system behaviour
 • Stimulates data-driven decision-making
 • Improve asset lifespan and utilization

• Value Proposition
 • Improve maintenance effectiveness
 • Increasing system operational efficiency
 • More flexibility in maintenance planning
Predictive Maintenance

Internet of Things

- Replacing filter in air handling unit (AHU)
 - Step 1: What is the preferred moment of replacement?
 - Step 2: Which data is available that says something about the filter?
 - Step 3: Which theoretical background has this data?
 - Step 4: From the data, can a model be obtained that predicts filter behaviour?
Predictive Maintenance

Internet of Things

• Step 1: What is the preferred moment of replacement?
 • According manufacturer 10,920 hours of operations (+/- 65 weeks)
Predictive Maintenance

Internet of Things

• **Step 2:** Which data is available that says something about the filter?

![Graph showing Supply Air Filter Pressure in function of Weeks]

- **First period** (26 weeks)
- **Second period** (23 weeks)
Predictive Maintenance

Internet of Things

• Step 3: Which theoretical background has this data?
 • At a constant debit and volume the pollution of a filter can be described according the law of Boucher’s

\[
\log\left(\frac{P}{P_i}\right) = -J \cdot V_L
\]

\[
P(t) = c_0 + c_1 \cdot e^{J \cdot V \cdot t}
\]

\(P\) [Pa] = pressure over filter on time \(x\)

\(P_i\) [Pa] = initial pressure when clean

\(J\) [-] = Boucher’s ratio of filter pore blocking

\(V_L\) [m³] = Volume of air passing

\(C_0\) [Pa] = initial pressure of the clean filter clean

\(C_1\) [-] = Constant to determine

\(J\) [-] = Boucher’s ratio of filter pore blocking
Predictive Maintenance

Internet of Things

• Step 4: Can a model be obtained from the data to predict filter behaviour?

 • Through 2th order polynomial regression an average model is obtained over both data periods.

 • First period (blue line):
 R-square = 90%

 • Second period (red line):
 R-square = 85%

 • Average regression function (black line):
 \[P(t) = P_i + 2e^{0.08t} \]

Prediction: +/- 8.900 hours (53 weeks)
250 Pa is reached.
Predictive Maintenance

Internet of Things

• Conclusions
 • Filter needs to be replaced around 250Pa.
 • Current filter replacement at +/- 4.000 hours (80-90 Pa)
 • Model predicts 250Pa is reached at +/- 8.900 hours of operation.

• Recommendations
 • Dataset contains P < 100Pa. Extending the dataset with P > 100 Pa gives outcome in obtaining a more accurate model
 • Current replacement cycle can be optimized from 2 times to 1 time per year
 • Prediction gives outcome to increase flexibility in maintenance planning
Use Case #2
Semantic Data Modelling
Making your data future proof
Semantic Data Modelling

Internet of Things

• Workload in a typical IoT project
 • 60% time spend on data extraction and understanding
 • 30% time spend on performing value added analytics

• Value Proposition
 • Bringing down the 60% spend on data extraction and understanding
 • Focus on what matters: creating valuable analytics
Semantic Data Modelling

Internet of Things

• Data from control systems and IoT devices
 • Lack of uniformity in naming the data
 • Lack on control system documentation

It’s a maze out there!!!!!
Semantic Data Modelling

Internet of Things

• At Heroes we work according Haystack
 • Open Source initiative from Virginia, USA (2014)
 • Fast growing world wide community
 • Sponsors: Intel, Siemens, KNX, Tridium, Arup

• How does it work?
 • Adding extra (meta) data using predefined tags
 • Comparable with the # of social media

• Why?
 • Shortens the analysis time
 • Simplifies the scaling of algorithms
 • Broad integration possibilities: *i.e.* Python, Node.JS, C++, C#, Java

Historical Data + TAG TAG TAG = Scalable Analytics
Semantic Data Modelling

Internet of Things

• **Equips**
 - Heat pumps
 - Heat Exchangers
 - Gas-fired boilers
 - Chillers
 - Etc.

• **Points**
 - Sensors
 - Set points
 - Control signals
Semantic Data Modelling

Internet of Things

Equip tags: ahu, hvac, equip

Point tags: outside air temp sensor point

Point tags: outside air filter delta pressure sensor point

Point tags: heatWheel cmd point

Point tags: return water valve cmd point

Point tags: return water temp Sensor point

Point tags: return / discharge air temp sensor point
Semantic Data Modelling

Internet of Things

Total 15 AHUs

216 points

Relevant for 8 AHUs, directly in one overview
Semantic Data Modelling

Internet of Things

• Advantages of Semantic Data Modelling
 • Structured database; effective queries
 • Decreases labour intensity of analytics
 • Eases the scalability of algorithms and analytics

• Advantages of Project Haystack principles
 • Predefined tags for different data sources
 • Fast growing open source community
 • Actively sharing ideas and code
Internet of Things
A world connected

Getting started with IoT
Exploring your business opportunities
What is your current practice?

Internet of Things

Connected

Imagine if you could instantly access data from facilities anywhere in the world and make mission-critical decisions more intelligently than ever before.

Remote Monitoring

Imagine that within your connected facilities thousand of devices are monitored and no/less physical inspection is needed.

Predictive Analytics

Imagine that your remote monitoring could automatically identify and fix potential problems before they happen.
Dare to start, but start wisely

Internet of Things

- Explore IoT opportunities
- Idea analysis & prioritization
- Build your IoT practice
- Get executive support
- Secure your first IoT PoC
- Grow your IoT practice

© 2017 Heroes